DR. RAMMANOHAR LOHIA AVADH UNIVERSITY, AYODHYA

Structure of Syllabus for the Program: M.A./M.Sc. I, II Year (I, II, III and IV Semester), Subject: MATHEMATICS Effective from Academic Year 2024-25

Structure of Syllabus Developed by						
Name of BoS	Designation	Department	College/University			
Convener/						
BoS Member						
Prof. Sant Sharan	Dean	Science	Dr. R M L A University,			
Mishra			Ayodhya			
Prof. Sanjay Kumar	Convenor	Mathematics	Shri Lal Bahadur Shastri			
Pandey			Degree College, Gonda			
Prof. Pankaj Mathur	Member	Mathematics	Dept of Mathematics,			
			Lucknow University			
Prof. V K Mishra	Member	Mathematics	M M M University of			
			Technology, Gorakhpur			
Prof. Sheela Mishra	Member	Mathematics	Dept of Mathematics,			
			Lucknow University			

DR. RAMMANOHAR LOHIA AVADH UNIVERSITY, AYODHYA

Structure of Syllabus for the Programme

M. Sc. I, II Year, Subject: Mathematics

Effective from Academic Year 2024-25

Course Coo	le	Course Title	Credit	s ľ	Г/Р	Evalu	ation
Α	В	С	D		E	F	G
	· · · · · · · · · · · · · · · · · · ·	SEMESTER-I (YEAR-I)					
B030701T	CORE	Advanced Abstract Algebra		5	Т	2 5	75
B030702T	CORE	Advanced Real Analysis		5	Т	2 5	75
B030703T	CORE	Topology		5	Т	2 5	75
B030704T	FIRST ELECTIVE	Mathematical Modeling		5	Т	2 5	75
B030705T	(Select any one)	Riemannian Geometry		5	Т	2 5	75
B030706T		Fuzzy Sets		5	Т	2 5	75
B030707P	SECOND ELECTIV	Programming in Python		5	Р	5 0	50
B030708P	E (Select any one)	Computational Techniques using	g C	5	Р	5 0	50
	I	SEMESTER-II (YEAR-I)				1	
B030801T	CORE	Analytical Dynamics		5	Т	2 5	75
B030802T	CORE	Theory of Differential Equatio Boundary Value Problems	n and	5	Т	2 5	75
B030803T	CORE	Measure and Integration		5	Т	2 5	75
B030804T	THIRD ELECTIVE	History of Mathematics		5	Т	2 5	75
B030805T	(Select any one)	Indian Contribution in Mathema	tics	5	Т	2 5	75
B030806T		Elementary Statistics		5	Т	2 5	75
B030807P	FOURTH ELECTIVE	Project Presentation on core/elective paper	any	5	Р	5 0	50
B030808P	(Select any one	Project Presentation on Mathematical Problem u Python	a ısing	5	Р	5 0	50

					Eval	uation
Course Co	de	Course Title	Credits	T/P		
					CIE	ETE
Α	В	С	D	Ε	F	G
		SEMESTER-III (YEA	R-II)			
B030901T	CORE	Functional Analysis	5	Т	25	75
B030902T	CORE	Integral Equations	5	Т	25	75
B030903T	CORE	Machine Learning	5	Т	25	75
B030904T	FIFTH	General Relativity	5	Т	25	75
B030905T	ELECTIVE	Finsler Geometry	5	Т	25	75
B030906T	(Select any one)	Advanced Discrete	5	Т	25	75
		Mathematics				
B030907P	SIXTH	Introduction to SCILAB	5	Р	50	50
	ELECTIVE	/MATLAB				
B030908P	(Select any one)	Introduction to LaTex	5	Р	50	50
		SEMESTER- IV (YEAR	-II)			
B031001T	CORE	Advanced Operations	5	Т	25	75
		Research				
B031002T	CORE	Fluid dynamics	5	Т	25	75
B031003T	SEVENTH	Special Functions	5	Т	25	75
B031004T	ELECTIVE	Differential Geometry of	5	Т	25	75
	(Select any one)	Manifolds				
B031005T		Advanced Numerical	5	Т	25	75
		Methods				
B031006P	RESEARCH	Research Project /	10	Р	50	50
	PROJECT /	Dissertation				
	DISSERTATION					

M.A./M.Sc. I (SEMESTER-I), PAPER-I

ADVANCED ABSTRACT ALGEBRA

Course Code: B030701T	Credit-5	Core paper
	Max. Marks: 25+75	
Total No. of Lectures-Tutorials (in hours per	er Course Title: Advanced Abstract Algeb	
week): 5+1=6		

Course outcomes:

CO1: The students will be well-awarded to biography of Indian mathematicians and their notable contribution in Mathematics.

CO2: The students will be able to know about solvable groups, cauchy's theorem for finite abelian group and finite groups, Maximal subgroups, simple groups, composition series, normal and subnormal series, Jordan-Holder theorem, modules, Schur's leema, Jordan canonical and rational canonical forms.

CO3: The students will be able to define Field extensions, splitting or decomposition field, normal and separable field extension, perfect field.

CO4: The students are able to analyse Galois group, fundamental theorem of Galois group.

CO5: The student is equipped with standard concepts and tools at advance level that will serve him/her

well towards pursuing research in algebra.

Unit	Topics	No. of
		Lectures
Ι	The brief introduction of Indian mathematicians and their notable	
	contributions: Aryabhata, Bhaskar-I, Bhaskar-II, Brahmagupta-Bhaskara	15
	Equation, Lemmas of Brahmagupta	
II	Solvable groups, cauchy's theorem for finite abelian group and finite groups,	
	Maximal subgroups, simple groups, composition series, normal and subnormal	20
	series, Jordan-Holder theorem, modules, sub-modules, cyclic module, module	
	homomorphism and isomorphism, Schur's lemma, Invariant subspaces, Jordan	
	canonical and rational canonical forms.	
III	Field extensions, finite field extensions, simple field extensions, algebraic field	20
	extension, splitting or decomposition field, normal and separable field	
	extension, perfect field.	
IV	Galois group, fundamental theorem of Galois group, Galois group of seperable	20
	polynomial, Galois field, construction of Galois field and its subfields.	
Suggestee	d Readings:	
1. A moder	rn Introduction to Ancient Indian Mathematics: T.S.Bhanu Murthy, New Age International	Pub
	algebra: David S.Dummit, Richard M. Foote–Wiley India Pvt. Ltd.	
-	algebra: I. N. Herstein–Wiley India Pvt. Ltd	
	algebra: A. R. Vasishtha, A.k. Vasishtha -Krishna publications.	
5. भारतीय	गणितज्ञ - प्रो॰ अनंत व्यवहारे, शारदा प्रकाशन, संस्कृत संस्थान, वाराणसी	

M.A./M.Sc. I (SEMESTER-I), PAPER-II

Course Code: B030702T Credit-5 **Core paper** Max. Marks: 25+75 **Course Title: Advanced Real Analysis** Total No. of Lectures-Tutorials (in hours per week): 5+1=6 Course outcomes: **CO1:** The students will be able to analyse Sequence and series of functions of real numbers, Uniform convergence. CO2: The students will be able to analyse Riemann-Stieltjes integration and their properties, Relation between Riemann and R-S integrals. **CO3:** The students will be able to analyse Functions of several variables, Taylor's theorem, Young's Theorem and Schwarz's theorem. CO4: The students will be able to analyse Functions of bounded variation and their properties, Absolutely continuous functions and their properties, Relation between absolute continuity and function of bounded variation. Unit Topics No. of Lectures I Sequence and series of functions of real numbers, Point wise convergence and Uniform convergence, Cauchy's criterion of uniform 20 convergence, Weierstrass test for uniform convergence of series, Uniform convergence and continuity, Uniform convergence and Uniform integration convergence and differentiation. Π Riemann-Stieltjes integration and their properties, Riemann-Stieltjes 20 integration with respect to arbitrary integrator, Existence of Riemann-Stieltjes integrals, Integration by parts theorem, Properties of R-S integrable functions, Relation between Riemann and R-S integrals. III 20 Functions of several variables, limit, continuity and differentiability of several variables, Directional derivatives, Derivative of functions in an open subset of Rⁿ to R^m. Taylor's theorem, Young's Theorem, Schwarz's theorem. IV Functions of bounded variation and their properties, Absolutely 15 continuous functions and their properties, Relation between absolute continuity and function of bounded variation. **Suggested Readings:** 1. Walter, R. Principles of Mathematical Analysis. 3rd edition, McGraw-Hill, 2017. 2. Terence T. Analysis II. Hindustan Book Agency, 2009. 3. Malik, S. C. and Arora, S. Mathematical Analysis. 2nd edition reprint. New Age International Publishers 2005. 4. Apostol, T. M. Mathematical Analysis. 2nd edition. Wesley Publishing Co. 2002. 5. Somasundram, D. and Chaudhary, B. A First Course in Mathematical Analysis. Narosa Publishing

ADVANCED REAL ANALYSIS

6. Royden, H. L. Real Analysis, Macmillan Pub. Co., Inc. 4th edition, New York, 1993.

House, 1996.

.

M.A./M.Sc. I (SEMESTER-I), PAPER-III

TOPOLOGY

Course Code: B030703T	Credit-5	Core paper
	Max. Marks: 25+75	
Total No. of Lectures-Tutorials (in hours per week): 5+1=6	Course Title: Topology	
Course outcomes:		

CO1: The students are able to analyse Topological space, open and closed sets in Topological space, neighborhoods, closure, interior, exterior, derived and dense sets, bases and sub-bases.

CO2: The students are able to analyse Continuous functions and Homeomorphism, first and second countable spaces and separability.

CO3: The students are able to understand various concepts like: T_0 , T_1 , T_2 , T_3 , T_4 spaces and basic properties.

CO4: The students are able to understand various concepts like: Compactness, Connectedness and Tychonoff product topology.

CO5: It provides the students useful tools for studying local properties of a space. Without the knowledge of topology, it is rather impossible even to conceive the idea of learning mathematics at higher level.

Unit	Topics	No. of
		Lectures
Ι	Definition and example of Topological space, open and closed sets in	
	Topological space, neighborhoods, closure, interior, exterior, derived	20
	and dense sets, bases and sub-bases, sub-spaces.	
II	Continuous functions and Homeomorphism, first (1 st) and second	
	(2 nd) countable spaces, separability.	20
III	T_0 , T_1 , T_2 , T_3 , T_4 spaces and their basic properties.	20
IV	Connectedness and compactness, definition and some basic theorem.	15
Suggested	Readings:	
1. K. D.Josł	i: Introduction to general topology—Wiley Eastern, New Delhi	
2. J. L. Kell	: General Topology — Van Nostrand Reinhold company, Newyork	
1 1		

3. James R Munkres: Topology —Prentice Hall India Private Ltd, New Delhi

4. J. N. Sharma : Topology —Krishna publications, Meerut.

M.A./M.Sc. I (SEMESTER-I), PAPER-IV MATHEMATICAL MODELLING

	Course Code: B030704T	Credit-5	First Electi	ve paper	
		Max. Marks: 25+75			
Total No.	of Lectures-Tutorials (in hours per week): 5+1=6	Course Title: Mat	hematical Mo	delling	
Course outco					
	udents will be able to convert a real-wor	ld problem into a mathem	atical model.		
	udents will be able to analyse mathemati	-		lling	
	nentary mathematical models, Role of	-		-	
population m	-	Ĩ	C	0 1	
CO3: The students will be able to do mathematical modelling through ordinary differential equations					
of first order a	and second order and Some applications	in economics, ecology, N	Iodelling in epi	demiology	
(SIS, SIR, SII	RS models) and basic reproduction numb	ber.			
CO4: The stu	dents will be able to do mathematical m	odelling through differen	ce equations, So	ome	
simple model	s, Basic theory of linear difference equat	tions with constant coeffi	cients.		
CO5: The stu	idents will be able to do mathematical m	nodelling through partial	differential equa	tions	
Unit	То	pics		No. of	
				Lectures	
Ι	Introduction to mathematical mode	lling: need, classification	on, modelling		
	process, Elementary mathematical	l models; Role of ma	thematics in	20	
	problem solving. Single species p	population model: The	exponential		
	model and the logistic model, Harve	esting model and its cri	tical value.		
II	Modelling with ordinary differen				
	concepts in ODE and stability of se	-		20	
	and global stability, Linear and no				
	Compartment models. Some app	-	-		
	Modelling in epidemiology (SIS				
	reproduction number.) and basic		
TII	1		Sama simula	20	
III	Mathematical models through di	-	-	20	
	models, Basic theory of linear of	-			
	coefficients, Mathematical modelli	6 6	1		
	economics and finance, Mathema	tical modelling through	gh difference		
	equations in population dynamics.				
IV	0 0	h partial differentia	- ·	15	
	Situations giving rise to of partial	l differential equation	models. The		
	one-dimensional heat equation:	derivation and solu	tion. Wave		
	equation: derivation and solution.				
Suggested Re	-				
	rthy, N. W. Page and E. Y. Rodin, Mathema		Press.		
-	r, Mathematical Modelling, Wiley Estern Lt				
-	Mathematical Models in Biology and Medic Ordinary Differential and Differential equation				
	er and Carlos Castillo-Chavez, Mathemat		Biology and F	pidemiology	
Springer.	er and Carlos Castrio Chavez, Mathemat	ieu nioueis in ropulation	Lionogy und L	praemoiogy,	
	iordano, William Price Fox, Maurice D. W	eir, A First Course in Mat	hematical Model	ling, 4th Ed.,	

Charlie Van Wagner.

7. Walter J. Meyer, Concept of Mathematical Modelling, McGraw-Hill.

8. Zafar Ahsan: Differential Equations and Their Applications, PHI learning Private Limited, New Delhi.

9. Steven H. Strogatz, Nonlinear dynamics and chaos, With Applications to Physics, Biology, Chemistry, and

Engineering.

M.A./M.Sc. I (SEMESTER-I), PAPER-IV

RIEMANNIAN GEOMETRY

	RIEMANNL			
C	ourse Code: B030705T	Credit-5	First Elective	e paper
		Max. Marks: 25+75		
Total No. of	Lectures-Tutorials (in hours per	COURSE TITLE:	Riemannian Geo	metry
	week): 5+1=6			
Course outco				
	nts will be able to define Riemanni	an space, metric, Curva	ature of a curve, c	curvature
	Geodesic and its applications.			
	nts will be able to define Congruen			on,
	f a congruence, Geodesic congruen		e	
	ents will be able to define con		nal ennuples an	d Ricci
	of rotation, curvature of congruenc			
	nts will be able to analyse Curvatur			•
	schur, Projective and Conformal tra	· •	urvature tensor a	nd
	curvature tensor with their fundame	1 1		
CO5: Stude	nts will be able to analyse Hypersu	rfaces, Meusnier's theo	rem, Line of curv	
Unit Topics		No. of		
	<u> </u>			Lecture
Ι	Riemannian space, metric, length	e e		• •
	tangent vector, Gradient of a scale	-		20
	Curvature of a curve, Principal		•	
	curvature Equation of geodes	ic and it's fundament	ntal properties	
	Parallelism of vectors of constant	and variable magnitud		
	Parallelism of vectors of constant a subspace of a Riemannian space	and variable magnitude.	le, Definition of	
II	Parallelism of vectors of constant a subspace of a Riemannian space Congruences of curves and ort	and variable magnitud hogonalennuple, Ricci	e, Definition of	
II	Parallelism of vectors of constant a subspace of a Riemannian space Congruences of curves and orth rotation, Curvature of a congruent	and variable magnitud hogonalennuple, Ricci	e, Definition of	20
	Parallelism of vectors of constant a subspace of a Riemannian space Congruences of curves and orth rotation, Curvature of a congruent irrotational congruence.	and variable magnitud hogonalennuple, Ricci hce, Geodesic congruer	e, Definition of coefficient of nce, normal and	
II	Parallelism of vectors of constant a subspace of a Riemannian space Congruences of curves and orth rotation, Curvature of a congruent irrotational congruence. Curvature tensor and Ricci tensor	and variable magnitud hogonalennuple, Ricci hce, Geodesic congruen c, Covariant curvature t	e, Definition of coefficient of nce, normal and ensor, Bianchi's	20
	Parallelism of vectors of constant a subspace of a Riemannian space Congruences of curves and orth rotation, Curvature of a congruent irrotational congruence. Curvature tensor and Ricci tensor Identity, Theorem of schur, Proj	and variable magnitud hogonalennuple, Ricci nce, Geodesic congruer c, Covariant curvature t fective and Conformal	e, Definition of coefficient of nce, normal and ensor, Bianchi's transformation,	
	Parallelism of vectors of constant a subspace of a Riemannian space Congruences of curves and orth rotation, Curvature of a congruent irrotational congruence. Curvature tensor and Ricci tensor Identity, Theorem of schur, Proj Weyl's Curvature tensor and Co	and variable magnitud hogonalennuple, Ricci nce, Geodesic congruer c, Covariant curvature t fective and Conformal	e, Definition of coefficient of nce, normal and ensor, Bianchi's transformation,	
Ш	Parallelism of vectors of constant a subspace of a Riemannian space Congruences of curves and orth rotation, Curvature of a congruent irrotational congruence. Curvature tensor and Ricci tensor Identity, Theorem of schur, Proj Weyl's Curvature tensor and Co fundamental properties.	and variable magnitud hogonalennuple, Ricci nce, Geodesic congruen , Covariant curvature t ective and Conformal onformal curvature te	le, Definition of coefficient of nce, normal and ensor, Bianchi's transformation, nsor with their	20
	Parallelism of vectors of constant a subspace of a Riemannian space Congruences of curves and orth rotation, Curvature of a congruent irrotational congruence. Curvature tensor and Ricci tensor Identity, Theorem of schur, Proj Weyl's Curvature tensor and Co fundamental properties. Hypersurfaces : Definition of	and variable magnitud hogonalennuple, Riccince, Geodesic congruen c, Covariant curvature t fective and Conformal onformal curvature te Hypersurface, Gauss	le, Definition of coefficient of nce, normal and ensor, Bianchi's transformation, nsor with their formula for a	
III	Parallelism of vectors of constant a subspace of a Riemannian space Congruences of curves and orth rotation, Curvature of a congruent irrotational congruence. Curvature tensor and Ricci tensor Identity, Theorem of schur, Proj Weyl's Curvature tensor and Co fundamental properties.	and variable magnitud hogonalennuple, Riccince, Geodesic congruen c, Covariant curvature t fective and Conformal onformal curvature te Hypersurface, Gauss	le, Definition of coefficient of nce, normal and ensor, Bianchi's transformation, nsor with their formula for a	20

1. L.P. Ersenhart : Riemannian Geometry – Princeton University Press.

2. C.E. Weatherburn: An Introduction to Riemannian Geometry and the Tensor Calculus —Cambridge University Press.

M.A./M.Sc. I (SEMESTER-I), PAPER-IV

		Y SETS		
	Course Code: B030706T	Credit-5	First Electi	ve paper
		Max. Marks: 25+75		
Total No	of Lectures-Tutorials (in hours per	Course T	itle: Fuzzy Sets	
<u> </u>	week): 5+1=6			
Course out			CN M	
	students will be able to define Fuzzy s	sets and representations	s of Membershi	ip function
v 1	of Fuzzy sets.			
	students will be able to define Fuzzy	numbers, Fuzzy cardin	ality, Fuzzy ari	thmetic
1	on intervals and Fuzzy equations.			
	lents will be able to analyse Fuzzy rela			
	ents will be able to define Fuzziness, Shar		ar programming	
Unit	То	pics		No. of
				Lectures
Ι	Fuzzy sets and representations of Membership functions, types of			20
	Fuzzy sets, α -cut, strong α -cut, level set, support core and height of			
	Fuzzy sets, Normal, equal and ed	quivalent Fuzzy set, c	containments,	
	union, intersection of Fuzzy sets,	degree of sub-set hor	od, hamming	
	distance, convex fuzzy sets and alg	ebra of convex fuzzy s	ets.	
II	Fuzzy numbers, Fuzzy cardinality	y, Fuzzy arithmetic o	perations on	
	intervals, arithmetic operations or	Fuzzy numbers, Fuz	zy equations	20
	A+X=B, AX=B.	•	•	
III	Fuzzy relations, union and inters	section of Fuzzy relat	ions, Binary	20
	Fuzzy relations, domain, rang	•		
	representations of binary Fuzzy	e e		
	Fuzzy relations, Fuzzy equivalence		1	
IV	Fuzziness, Shannon Entropy, Fuzz		problems.	15
Suggested R				
	heory :Michael Smithson, Jay Verkuilen— S	age Publications		
•	Fuzzy logic and Fuzzy systems :George J.K	-	ific, Singapore	
-	and Fuzzy logic : M Ganesh — PHI Publicat			
4.Fuzzy set t	heory :Shiv Raj Singh —Krishna publication	s, Meerut		

M.A./M.Sc. I (SEMESTER-I), PAPER-V PROGRAMMING IN PYTHON

Course	e Code: B030707P	Max. Marks: 50 + 50	Second Elective Paper
	Total No. of Lectures-Practicals (in hours per week) : 4 + 2		RAMMING IN
CO1: 7 CO2: 7 CO3: 7 CO4: 7	e outcomes: The students will be able to describe the basic The students will be able to implement object- The students will be able to making use of sof The students will be able to experience with an	oriented concepts. tware easily right out of	
Introdu and Tu	of Python programming ction to Python, Python Identifiers, Key wor ples, Dictionary & Sets, Input-Output, Con catements, Functions, Modules & Recursions,	ditional Statements and	Expressions, Loops, Control
14	Getting started, Anaconda Installation, Pytho Calculate the distance between two points in Write a program to calculate average of two Write a program to calculate factorial of a nu Write a program to find GCD of two number Write a program greatest number from three Write a program to print the reverse of a num Write a program to classify a given number a Write a program that computes permutations Write a program that computes displays all h Write a program to print Fibonacci series up Write a program to convert binary number to Opening, closing, editing, deleting and create Create a simple function and call it from the Loops in python: examples	three dimensions numbers and print their of imber. rs. numbers. nber. as prime or composite F(n,r) and combinations eap years from 1900-210 to a given number of decimal number and vio ing files in python	deviation. s C(n,r))1
Sugges 1 2 3	ted readings: S. Gowrishankar and A. Veena A, Int (2019). Adam Stewart -Python Programming (20 Kenneth A. Lambert, Fundamentals of Pyth India (2011).	016).	

M.A./M.Sc. I (SEMESTER-I), PAPER-V

Computational Techniques using C

Computational	Fechniques using C					
Course Code: B030708P	Credit-5	Second Elective Paper				
	Max. Marks: 50 + 50					
Total No. of Lectures-Practicals (in hours per	Course Title: Computat	tional Techniques using C				
week): 4 + 2						
Course outcomes:						
CO1: The students will be able to learn and use basic principles of C programming language.						
CO2: The students will be able to define and manage	ge various type of data an	nd data- structures based on				
problems subject domain.						
CO3: The students will be able to have ability to handle possible errors during program execution.						
CO4 : The students will be able to define various type	es of functions and able to	apply various types of				
decision making, statements/loops.						
CO5: The students will be able to able to apply in var	rious fields of Mathematic	CS.				
Basics of C programming	anta Das success D	vian Chula Errorreti (Cl				
 Overview of C: History and importance of C. Sam Programme, Constants, Variables, and Data T. Assignment, Increment and Decrement, Condit expressions, evaluation of expressions. Input and Decision making with if statement, simple if st statements, The else if Ladder, The Switch state Looping: The while statement, The do statement, Two-Dimensional Arrays. Deceleration of One an Two-Dimensional Arrays. Multi-dimensional Array User-defined Functions: Need for user-defined functions. Practical: Programming in C (with ANSI features) 1. To print the prime numbers between 1 and 2. Write a program to add, subtract, multiply 3. To find the average of between n and 12n 4. Write a program to check a number is Arra 5. Write a program to display table from 11 6. To find the roots of a cubic equation. 	ype. Operators: Arithm ional, Bitwise, Special. output operators. Decisio atement, the if-else state ement, The Goto statement The for statement. Jump d Two–Dimensional Array ys, Dynamic Arrays, Ch ctions. A multi-function p s Call, Functions Deceleration d 100. y and divide common fract where n is an integer. mstrong or not ? to 20.	hetic, Relational, Logical, Expressions: Arithmetic on Making and Branching: tement, Nesting of if-else ent. Decision Making and in Loop. Arrays: One and ays. Initializing of One and aracter Arrays and Strings. program. Elements of user- ation. Category of function,				
7. To sum and difference of any two matrice	es and hence find the row	sum and				
column sum of a given matrix						
8. To find inverse of a given 3x3 matrices.						
9. Write a program to find the transpose, tra-	ce and norm of a matrix.					
10.To sort all the elements of a 4x4 matrix.						
11. Program to accept a matrix and determine	ne whether it is a symmet	ric matrix,				
skew-symmetric or not.						
12 . Write a program to print Fibonacci num						
13. Program to find the sum of the series: 1 +	$-x+x^2+\cdots+x^n$.					
Suggested Readings:						
1. Balagurusamy: Programming in ANSI C, MacGrav	w Hill Education (India) H	Pvt. Ltd., New Delhi.				
2. Kernigham and Ritche: C Programming Language	e, Pearson Education Ind	ia,				

.

M.A./M.Sc. I (SEMESTER-II), PAPER-I

Analytical Dynamics Course Code: B030801T Credit-5 **Core paper** Max. Marks: 25+75 Total No. of Lectures-Tutorials (in hours per **Course Title: Analytical Dynamics** week): 5+1=6 Course outcomes: **CO1:** The students will be able to classify dynamical systems, and define generalized coordinates, Classification of Dynamical System and D'Alembert's Principle, Lagrange's equations. CO2: The students will be able to define Hamilton's canonical equations, Hamilton's principle and principle of least action. **CO3:** The students will be able to define two-dimensional motion of rigid bodies, Euler's dynamical equations for the motion of a rigid body about an axis, theory of small oscillations and examples. **CO4:** The students will be able to define Lagrange Bracket, Poisson Bracket, Canonical Transformation, Jacobi Identity, Hamilton Jacobi Theorem and Poisson's Theorem Unit Topics No. of Lectures Ι Introduction of Analytical Dynamics, Generalized coordinates, Degree of 20 Freedom, Classification of Dynamical System, Conservative and Non Conservative System, generalized Forces, D'Alembert's Principle, Lagrange's equations Hamilton's canonical equations, Hamilton's principle and principle of least Π action, Conservation of Momentum and Displacement of the System, 20 Hamiltonian Function and total Energy, Cyclic or Ignorable Coordinate. III Two-dimensional motion of rigid bodies, Euler's dynamical equations for the motion of a rigid body about an axis, theory of small oscillations and examples. 20 IV Lagrange Bracket, Poisson Bracket, Canonical Transformation, Jacobi Identity, 15 Hamilton Jacobi Theorem, Poisson's Theorem **Suggested Readings:** Classical Mechanics : Goldestein, H, Pearson Education, 2011 1 2 Classical Mechanics : Rana and Jog, McGraw Hill Education, 2017 3

Classical Mechanics : J.C. Upadhyaya, Himalaya publication, 2014

4 Analytical Dynamics: A New Approach, Udwadia and Robert, Cambridge University Press, 2007

M.A./M.Sc. I (SEMESTER-II), PAPER-II

Theory of Differential Equation and Boundary Value Problem

		Max. Marks: 25+75		
Total No. o	f Lectures-Tutorials (in hours per	Course Title: Theor	v of Differential	Equation
2000210000	week): 5+1=6		ry Value Proble	-
	<i>,</i>		•	
Cours	e outcomes:			
CO1: The st	idents will be able to analyse Laplac	e's Equation, Harmonic	functions, Hea	t and Wave
equations and	I their Fundamental solutions.			
CO2: The stu	dents will be able to analyse Existence	and uniqueness theorer	n, initial value pr	roblems and
picardes theo	rem, Peano's existence theorem and co	orollaries.		
CO3: The stu	dents will be able to analyse Ordinary	y Differential Equations	of Sturm-Liouvil	le boundary
value problen	n, Green's function, Poisson representa	ation formula.		
CO4: The stu	dents will be able to analyse Application	on of Laplace transform	to solve different	tial
equations and	Fourier transforms to boundary value l	Problems		
Unit	Topics No. o		No. of	
				Lectures
Ι	Method of separation of variables	for Laplace, Fundamer	ital solution of	
	Laplace's Equation, Harmonic functions and properties, The maximum 20			20
	Laplace S Equation, Harmonic Tun	ctions and properties,	The maximum	20
	principle, Energy methods, Heat	• •		20
		and Wave equations	, Mean value	20
	principle, Energy methods, Heat	and Wave equations	, Mean value	20
II	principle, Energy methods, Heat Method, Solution of Wave equat	and Wave equations tion with initial values	, Mean value , Fundamental	
II	principle, Energy methods, Heat Method, Solution of Wave equat solutions of Heat Equation.	and Wave equations tion with initial values m for first order ODE	, Mean value , Fundamental , initial value	20
II	principle, Energy methods, Heat Method, Solution of Wave equat solutions of Heat Equation. Existence and uniqueness theore	and Wave equations tion with initial values m for first order ODE onvergence of solution	, Mean value , Fundamental , initial value of initial value	
II III	 principle, Energy methods, Heat Method, Solution of Wave equat solutions of Heat Equation. Existence and uniqueness theore problem and picardes theorem, compared to the solution of the solution of the solution of the solution. 	and Wave equations tion with initial values m for first order ODE onvergence of solution m (statement only) and	, Mean value , Fundamental E, initial value of initial value corollaries.	
	 principle, Energy methods, Heat Method, Solution of Wave equat solutions of Heat Equation. Existence and uniqueness theore problem and picardes theorem, co problems, Peano's existence theore 	and Wave equations tion with initial values m for first order ODE onvergence of solution m (statement only) and of Sturm-Liouville bo	, Mean value , Fundamental , initial value of initial value corollaries.	20
	 principle, Energy methods, Heat Method, Solution of Wave equat solutions of Heat Equation. Existence and uniqueness theore problem and picardes theorem, co problems, Peano's existence theore Ordinary Differential Equations 	and Wave equations tion with initial values m for first order ODE onvergence of solution m (statement only) and of Sturm-Liouville bo n functions, Orthogon	, Mean value , Fundamental , initial value of initial value corollaries.	20
	 principle, Energy methods, Heat Method, Solution of Wave equat solutions of Heat Equation. Existence and uniqueness theore problem and picardes theorem, co problems, Peano's existence theore Ordinary Differential Equations problem, Eigen values and Eigen 	and Wave equations tion with initial values m for first order ODE onvergence of solution m (statement only) and of Sturm-Liouville bo n functions, Orthogon on.	, Mean value , Fundamental , initial value of initial value corollaries. pundary value ality theorem,	20
III	 principle, Energy methods, Heat Method, Solution of Wave equat solutions of Heat Equation. Existence and uniqueness theore problem and picardes theorem, co problems, Peano's existence theore Ordinary Differential Equations problem, Eigen values and Eigen Expansion theorem, Green's function 	and Wave equations tion with initial values on for first order ODE onvergence of solution m (statement only) and of Sturm-Liouville bo n functions, Orthogon on. m to solve different	, Mean value , Fundamental E, initial value of initial value corollaries. Dundary value ality theorem, ial equations,	20

2. Coddington, E. A. and Levinson, N. (1955) Theory of Ordinary Differential equations, TMHEducation.

3. M. D. Raisinghania, Advanced Differential Equations, S. Chand, 2016.

.

4. D.P. Choudhary and H. I. Freedman: A Course in Ordinary Differential Equations, Narosa Publishing House, New Delhi, 2002.

.

M.A./M.Sc. I (SEMESTER-II), PAPER-III

MEASURE AND INTEGRATION

1	MEASURE AN	r		
	Course Code: B030803T	Credit-5	Core pa	aper
		Max. Marks: 25+75		
Total No	Total No. of Lectures-Tutorials (in hours perCourse Title: Measure and Integration			ration
	week): 5+1=6			
Course out				
	dents will be efficient to know the measu		-	
-	measure gives the measurability of a set.	Student will easily classify	some measural	ole and non
-measurabl				
	dents will enable themselves to know mea		ole functions. C	Countability
	rability of a set is clearly known to student			
	dents will be defined Lebesgue integral,		nn integral and	l Lebesgue
-	ebesgue integral of bounded measurable fu			
	students will be able to analyse L^p -space,		theorem, Hold	ler's
÷.	Minikowski inequality, Schwarz's and Jer			
Unit	Тој	pics		No. of
				Lectures
Ι	Measurable sets, outer and inner me			
	intersection of a Measurable sets. Lebe	•	ts of measure	20
	zero. Boral sets, measure of countable ar			
II	Measurable functions, algebra of me			
	function, measurability of a continuous f			20
III	Lebesgue integral, Relation between R	6	0	20
	criterion theorem for Lebesgue inte			
	measurable function and it's propert	ies, Lebesgue integral o	of unbounded	
	functions.			
IV	L^p -space, some basic definitions and the	· · · · ·	, Minikowski	15
	inequality, Schwarz's and Jensen Inequa	lity.		
Suggested	0			
1 – Measu	re theory : Krishna B. Athreya, Soume	endra N.Lahiri – Trim Hi	ndustan book	Agency
2 – Measu	re theory and Integration : G. DE Bar	ra – New Age internation	nal Publisher	
3 – Measu	re theory and Integratism : A K Malik	, S C Malik, S K Gupta -	- willy Eastern	l
Publisher		-		

M.A./M.Sc. I (SEMESTER-II), PAPER-IV

HISTORY OF MATHEMATICS

	Course Code:B030804T	Credit-5 Max. Marks: 25+75	Third Elective	e Paper
Total No	o. of Lectures-Tutorials (in hours per	Course Title: HIST	ORY OF MATHEN	IATICS
	week): 5+1=6			
Course out	comes:			
CO1: The s	students will be able to know that how the	concepts have been dev	eloped in Mathem	natics
Unit	То	pics		No. of
				Lectures
I	Ancient Mathematics: The Babylonian	s. The Egyptians. The G	reeks. The	20
	Romans, The Maya, The Chinese, The	Japanese. The Hindus.	The Arabs	
II	Mathematics in Europe during the mid	dle age.		
				20
111	Mathematics during the sixteenth, seve	enteenth, eighteenth, nin	eteenth, and	
	twentieth centuries.			20
IV	Evolution of Mathematics from the	Renaissance contributio	ns of Vieta and	15
	Descartes to the groundbreaking adva	incements by Newton, I	Euler, Lagrange,	
	Laplace, Hardy, and Ramanujan.			
Suggested	Readings:			
1. F. Cajon:	A History of Mathematics, 1894.			
2. J. Stillwe	II: Mathematics and its History, Springer I	nternational Edition, 4th	n Indian Reprint, 2	2005.

M.A./M.Sc. I (SEMESTER-II), PAPER-IV

	Indian Contribu	ition in Mathematic		
Course Code:B030805T		Credit-5	Third Elec	tive Paper
		Max. Marks: 25+75		
Total No	o. of Lectures-Tutorials (in hours per	Course Title: In	dian Contribu	tion in
	week): 5+1=6	Mathematics		
Course out CO1: The s	comes: students will be able to know Vedic perio	d and some Indian contri	bution in Math	ematics
Unit	*		No. of	
				Lectures
I	Vedic period: Yajurveda samhita in which collection of large number is used, mantra in asvamedha, solution of partial fraction in purush sukta, value of virtual geometric constructions in satpatha Brahmma. Rules for construction of sacrificial five altars in sulbha sutra, verbal expression of Pythagorean theorem and square root of two in Baudhayana Sulba Sutra.		20	
11	Peninis grammer for use of Boolean logic and Null operator.Post Vedic Period: Chhandas shastra of pingla for enumeration of syllabic combination; Pascal's triangle, bionomial coefficients, basic ideas of fibonacci numbers and combinatorial identity in work of Katyayana. Jain			

	philosopher Mahavira's classified number as enumerable, innumerable and		
	infinite. He used beejganita samikaran and shunya (zero) with Anuyoga		
	dwara sutra including factorials. Astronomical work of Bhadrabahu.		
III	III Classical Period: Aryabhatiya and Arya- Siddhanta of aryabhatta, his work		
	includes Place value system and position of a planet along with number of days in a year. Bhramhagupta who introduced concept and computing method of zero. Works of Varahamihira, Bhaskara l, Bhaskara ll, Mahavira, Madhava of sangamgrama and nilakantha somayaji. Works of shridhara, manjula, shripati mishra.	20	
IV	Modern Period: Contribution of Bharati krishna tirtha, Contribution of Ramanujan, Mahalanobis, C R Rao, Kaprekar, Harish Chandra, Satyendra Nath Bose, Narendra Karmakar and Shakuntala Devi,	15	

1. Gerard G. Emch, M.D. Srinivas, R. Sridharan (2005), Contributions to the History of Indian Mathematics, Hindustan Book Agency.

 Gaurav Tekriwal (2021), The Great Indian Mathematics, Penguin Random house India Private Limited.
 Jayant V Narlikar (2003), The Scientific Edge, The Indian Scientist from Vedic to Modern Times, Penguin Books Limited.

M.A./M.Sc. I (SEMESTER-II), PAPER-IV

Cou	rse Code: B030806T	Credit-5 Third Elective pap		ive paper
		Max. Marks: 25+75		
Total No. of Lectures-Tutorials (in hours perCourse Title: Elementary Statistics				
	week): 5+1=6			
Course outcomes	-			
	vill learn basic concepts of statistics	-		
	vill be able to study various measur	es of dispersion like rang	ge, mean deviat	ion, quartile
deviation and star				
	vill be able to analyze and solve va	rious concepts related to	probability and	l probability
distributions.				
	ill be able to learn and use concepts	confidence intervals, hyp	pothesis testing.	linear
regression				
Unit]	Topics No. of		
				Lectures
I	Introduction to Statistics, Brand	ches of Statistics, Popu	lation versus	15
	Sample, Basic Terminology, Typ	es of Variables, Summat	ion Notation,	
	Sources of Data, and Sampling	Techniques, Frequency	Distributions,	
	Relative Frequency.			
II	Pie Charts, Frequency Histogram,	and Cumulative Frequer	icy. Measures	
	of Center: Mean, Median and N	lode. Intro to Measures	of Dispersion	15
	(Ungrouped Data), Measures of Va	ariability: Range, variance	and standard	
	deviation.			
III	Random variables, Discrete and	continuous Random Vari	ables. Mean	
	and Standard Deviation, Probab	ility, probability distribut	ions, Intro to	20
	Normal Distribution, Application	ns of Normal Distribut	ion sampling	
L				

Elementary Statistics

	distributions, binomial distribution, the student's t distribution, the Chi-	
	square distribution	
IV	Estimation using confidence intervals, hypothesis testing, linear 25	
	regression, correlation	
Suggested Read	ings:	
1. Gupta, S.C. and Kapoor, V.K. (2007): Fundamentals of Mathematical Statistics, 11th Edn.,		
(Reprint), Sultan Chand and Sons.		
2. Miller, Irwin and Miller, Marylees (2006): John E. Freund's Mathematical Statistics with		
Applications, (7th Edn.), Pearson Education, Asia.		
3. Spiegel and Stephens: Schaum's outlines Statistics, McGraw Hill Education		

M.A./M.Sc. I (SEMESTER-II), PAPER-V

Project Presentation on any core/elective paper

Course Code: B030807P	Credit-5 Max. Marks: 50 + 50	Fourth Elective Paper	
Total No. of Lectures-Practicals (in hours per week): 4 + 2	Course Title: Project	t Presentation on any tive paper	
Course outcomes:			
CO1. Deepened Subject Mastery: Achieve comprehe	ensive understanding of se	lected mathematical	
concepts, showcasing expertise in a specific area of r	nathematics.		
CO2.Research and Analytical Skills: Enhance research	h techniques and critical e	evaluation skills, enabling	
the application of theoretical concepts to practical so	cenarios.		
CO3.Effective Communication: Develop the ability to	o succinctly convey comple	ex mathematical ideas in	
written reports and oral presentations to a varied au	dience.		
Students are tasked with conducting a thorough study	and survey of a core or el	ective paper of their	
choosing, selected from the curriculum offered in eith	her the 7th or 8th semester	of Bachelors (1 st and 2 nd	
semester of Masters) in Mathematics program. The evaluation of the project will primarily focus on the			
presentation of critical, innovative ideas, results, and applications stemming from the chosen paper. Each			
student is required to articulate these insights effective	ely during their presentation	on. Additionally, students	
must submit their project reports in both hard and sof	t copy formats, ensuring co	omprehensive	
documentation of their research and findings			

Guidelines for Post Graduate M.Sc. Mathematics Project

- **1.** Any student registering for doing project is required to inform the In-charge, Mathematicsthe name of his/her project supervisor(s) at the time of pre-registration.
- **2.** The student must submit the "Project Registration Form" to the In-charge, Mathematics. Sample of Project Registration Form is given below:

Name of the college:	
Department	
Name of the student:	
Roll No. :	
e-mail :	
Name of the supervisor(s):	
Title of the Project:	
Signature of the Student:	
Signature of supervisor(s):	
Signature of HOD,	
Mathematics	

Project Registration Form

3. The student will be required to submit hard copy and an electronic version of the final Project Report / Dissertation to the Department of Mathematics. The final Project Report / Dissertation should not be longer than 50 A4 size pages in 1.5 line spacing. The following sequence for the thesis organization should be followed:

(i) **Preliminaries** (Title Page; Certificate; Abstract/Synopsis; Acknowledgement and/ or Dedication; Table of Contents; List of Figures ,Tables, Illustrations, Symbols, etc (wherever applicable))

(ii) Text of Thesis (Introduction; The body of the thesis, summary and conclusions)

(iii)**Reference Material** (List of References /Bibliography)

(iv) Appendices (if any)

M.A./M.Sc. I (SEMESTER-II), PAPER-V

Project Presentation on a Mathematical Problem using Python

Course Code: B030807P	Max. Marks: 50 + 50 Fourth Elective Paper		
Total No. of Lectures-Practicals (in hours per week) : 4 + 2	Course Title: Project Presentation on a Mathematical Problem using Python		
Course outcomes:			
CO1. Data Visualization Mastery: Students will lear	n to adeptly choose and apply appropriate data		
visualization techniques, enhancing their ability to p	resent data insights effectively.		
CO2. Model Development Skills: Gain practical expe	rience in constructing simple yet insightful models		
in Python, demonstrating an understanding of data	summarization techniques.		
CO3. Comprehensive Reporting: Develop the skill to	articulate the research process, analysis, and		
findings in a well-structured report, showcasing the	ability to communicate complex information clearly.		
 straightforward model to encapsulate the data's e detailing their methodology, findings, and model department in both hard and soft copy formats prior to Tools which may be used which may be used for 1. Scatter plots 2. Bar charts 3. Histograms 4. Pie Charts 5. Interactive plots -1 : modifying display. 6. Interactive plots - 2 : editing data and plots. 7. How to make a simple animation in python 	to their presentation.		
Suggested readings:			
	on to Python Programming, CRC Press (2019).		
2 Adam Stewart -Python Programming (2016)			
3 Kenneth A. Lambert, Fundamentals of Pyth India (2011)	non First Programs with Mindtap, Cengage Learning		
 John V. Guttag, Introduction to Computation and Programming using Python, MIT Press (2021) 			
· · · · · · · · · · · · · · · · · · ·	, and 1105running using 1 yulon, 1111 11005 (2021)		

Guidelines for Post Graduate M.Sc. Mathematics Project

1. Any student registering for doing project is required to inform the In-charge, Mathematics the name of his/her project supervisor(s) at the time of pre-registration.

2. The student must submit the "Project Registration Form" to the In-charge, Mathematics. Sample of Project Registration Form is given below:

Name of the college:	
Department	
Name of the student:	
Roll No. :	
e-mail :	
Name of the supervisor(s):	
Title of the Project:	
Signature of the Student:	
Signature of supervisor(s):	
Signature of HOD, Mathematics	

Project Registration Form

3. The student will be required to submit hard copy and an electronic version of the final Project Report / Dissertation to the Department of Mathematics. The final Project Report / Dissertation should not be longer than 50 A4 size pages in 1.5 line spacing. The following sequence for the thesis organization should be followed:

(i)**Preliminaries** (Title Page; Certificate; Abstract/Synopsis; Acknowledgement and/ or Dedication; Table of Contents; List of Figures ,Tables, Illustrations, Symbols, etc (wherever applicable))

(ii) Text of Thesis (Introduction; The body of the thesis, summary and conclusions)

(iii)Reference Material (List of References /Bibliography)

(iv)Appendices (if any)

M.A./M.Sc. II (SEMESTER-III), PAPER-I

FUNCTIONAL ANALYSIS

Course Cod	le: B030901T	Credit-5 Max. Marks: 25+75	Core Paper	
	Total No. of Lectures-Tutorials (in hours per Course Title: Functional week): 4+1=5			
Course outc				
	students will be able to analyse Norme	d linear snace Banach sna	Ce	
	students will be able to analyse l_p^n , l			
	her theorem , Continous and Bounded		, Dunuen spuce $C(R)$,	
	students will be able to analyse Ison		logical Isomarphism	
	norm, Riesz- Lemma, Convexity, Ha		•	
-	ph Theorem.	ini- Danach Theorem, Ope	in mapping Theorem,	
	students will be able to analyse Hilbert spa	and Diasz representation the	Nrom .	
Unit	Topics	ace, Riesz representation the	No. of Lectures	
I	Normed linear space, Banach space,	Summability in Normed	15	
I	linear space, continuity and joint contin	•	15	
II	l_p^n , l_p, l_2 and l_∞ Banach spaces, Riesz – Fisher theorem,		15	
	Subspaces and Quotient spaces			
	Continous and Bounded	linear		
	Transformation.			
III	Isometric Isomarphism, Topological Is	somarphism, Equivalent	20	
	norm, Riesz- Lemma, Convexity, Hahn	- Banach Theorem, Open		
	mapping Theorem , Closed Graph Theorem			
IV	Hilbert space, The adjoint of an oper-		25	
	Self adjoint, Normal and Unitary operat	ors, Riesz representation		
	theorem.			
Suggested	-			
	n : Functional Analysis - TATA McGraw H			
	d sobolev : Elements of Functional Analy	-	prporation New Delhi	
E.C. Titchmarsh : A Theory of Functions - Oxford University Press New Delhi				
J.N. Sharma	& A.R.Vasishtha : Functional Analysis - K	rishna Publications Meerut		

.

÷

M.A./M.Sc. II (SEMESTER-III), PAPER-II

INTEGRAL EQUATIONS

Course Code:	B030902T	Credit-4 Mark Markey 25 : 75	Core paper	
Total No. of I	estures Tutorials (in hours	Max. Marks: 25+75		C
	ectures-Tutorials (in hours r week): 4	Course Title: INTEGRA	AL EQUATION	5
Course outcon				
	nd the methods to reduce Initial value	nrohlems associated with	linear differentia	1
	arious integral equations.	problems associated with		1
-	s and solve different integral equations	s using various techniques		
-	nts will be able to analyze Fredholm a			(tho
	•		-	
kernels.	proximations, Neumann series and reso	olvent kernel, equations w		type
	nto will be able to apply and colve t	he colution of integral age	ations by transfe	
methods	nts will be able to analyze and solve t	ne solution of integral equ		
Unit	Торі	ics	N	o. of
Omt	100			ctures
I	Integral Equations: Definition and	classification of linear in		ctul es
	equations. Conversion of initial a		-	
	into integral equations.	and boundary value pro		
	Conversion of integral equations into	o differential equations		
II	Fredholm Integral Equations: Solu	•	ns with	
	separable kernels, Eigen values and	- .		
		•	esolvent	
	kernel. Solution of integral			
	equations with symmetric kernels, H	lilbert-Schmidt theorem.		
III	Volterra Integral Equations: Succe		umann	
	series and resolvent kernel. Equation	••		
IV	Solution of integral equations			
	Singular integral	,		
	equations, Hilbert transform and sol	utions by Laplace transform	mation.	
Suggested Rea		, ,		
	inear Integral Equation. Theory and Te	chniques. Academic Press	, 2014.	
	1. D.: Integral Equation & Boundary Val	•		
•	luction to Integral Equations with Appl		•	
	B.: Method of Applied Mathematics, C		-	
	.: A First Course in Integral Equations. V	·	Co. Inc. 1007	

.

÷

M.A./M.Sc. II (SEMESTER-III) PAPER-III

MACHINE LEARNING

Course Co	ode: B030903T	Credits-4 Marks:25+75	Core paper
Total No.	of Lectures (in hours per week) -4	Course Title: MACHINE LEA	RNING
Course out	comes:		
CO1: The st	tudents will be able to understand the ne	ed for machine learning for variou	s problem
solving.			
CO2: The st	tudents will be able to understand a wide	e variety of learning algorithms and	l know how to
	dels generated from data.		
CO3: The st	tudents will be able to understand the late	est trends in machine learning.	
	students will be able to identify approp		s for general real-
world proble	ems and apply these algorithms to solve		
Unit	Торіс	S	No. of
			Lectures
Ι	Introduction to Machine Learning (M	L), Applications of ML, Recent	20
	trends in Machine Learning, Le		
	Introduction to Machine Learning		
	Data and Datasets, Preparation of I	-	
	Learning, Dataset cleaning Train,		
	Imbalanced data, Outliers, Data Scien		
II	Regression: Linear Regression, Cos	.	20
	Regressions, Logistic Regression. De	-	
	Underfitting, Confusion Matrix, Perf	ormance Metrics: Accuracy,	
	Precision, Recall		
Ш	k-Nearest Neighbor (KNN) Classific		20
	classification, Logistic Regression Ac	_	
	Methods: Neural Networks and Poly	nomial Fits, over and under	
	fitting.		
IV	Statistical Inference and Bayes Theor		15
	Approaches, Introduction to Bayesiar		
	Likelihood, Posterior and Priors, Mod	lel comparison, Maximum	
	Likelihood.		
Suggested	0		
	ryn A. L., Bailer, Jones, Practical Bayesian I	•	
	Malu and S.K.Pandey, Machine Learning want in the second strain was nivasaraghavan, A. and Joseph, V: Machine		S.Chanu Pud, 2024
	chryar Mohri, Afshin Rostamizadeh, Ameet T		arning, MIT Press.
201			
	nan Haykin: Neural Netowrks, Pearson Educ	ation.	

M.A./M.Sc. II (SEMESTER-III) PAPER-IV GENERAL RELATIVITY

Course C	ode: B030904T	Max. Marks: 25+75	Fifth Elective	e paper
Total No. of Lectures (in hours per week) – 4		4 Course Title: GENERAL RELATIVIT		VITY
Course o	outcomes:			
CO1: TI	he students will be able to understand me	etric tensor and Riemar	nnian space.	
CO2: T	the students will be able to learn Ricci	i tensor, Bianchi Ident	tities, examples	of
symmetr	ric space time.			
CO3: TI	he students will be able to understand E	instein's field equation	, gravitational v	vaves in
empty				
space.				
Unit	Торі	ics		No. of
				Lectures
Ι	Transformation of coordinates, transform			15
	tensor, Contraction, Quotient law, M		-	
	Conjugate tensor, symmetric and anti-		or, Christoffel	
	symbol, Covariant derivative, Riemannia			
II	Tensor form of gradient, divergence and	•		20
	curvature tensor, Ricci tensor, Bianchi id	entities, Geodesic, Null g	geodesic,	
	Geodesic deviation			
III	Introduction to General Relativity, Pr	. .	1	20
	General covariance, Mach's Principle, g			
	tensor, Newtonian approximation of equ			
	field equation, Einstein's field equation		n's equations,	
IV	deviation of Einstien's field equation from		vian actudian	20
IV	Gravitational field in empty space Singularities in Schwarzschild line elen			20
	exterior line element, Planetary orbits, T	-		
	Birkhoff's theorem.	lifee Crucial tests in Gen	cial iclativity,	
Suggest	ted readings:			
00	Jarlikar: An Introductions to Relativity; Cam	bridge University Press	2010	
	s Hartle: Gravity, Pearson Education, 2003		2010.	
	urandhar and Sanjit Mitra: General Relativit	y and Gravitational Wave	es, Springer 2022	
	Puri: General Theory of Relativity; Pearson	•	· 1 O	
	Khriplovich: General Relativity; Springer Sc		2005.	
	ei Cheng: Relativity, Gravitation and Cosmo			

M.A./M.Sc. II (SEMESTER-III) PAPER-IV FINSLER GEOMETRY

	FINSLEN	GEOMETRY	
Course Code	e: B030905T	Max. Marks: 25+75	Fifth Elective paper
Total No. o	of Lectures (in hours per week) – 4	Course Title: Finsler	Space
Course outcom	nes:		
CO1: The str	udents will be able to analyse Finsle	er space and homogene	eity properties of g_{ij} and
C _{ijk} , Geodesic	28.		
CO2: The stu	udents will be able to analyse Fund	lamental postulates of C	Cartan, Cartan covariant
derivatives,	Properties of Cartan covariant d	derivatives, Berwald's	connection, Covariant
derivatives o	f Berwald's and it's properties, Rela	ation between connection	on coefficients of Cartan
and Berwald.			
CO3: The stu	idents will be able to find Commut	ation formulae, The thr	ree Curvature tensors of
Cartan, Ident	ities satisfied by the Curvature tenso	ors and Bianchi identitie	28.
CO4: The st	udents will be able to analyse Cur	rvature tensor of Berw	ald, The Lie-derivatives
in a Finsler sp	pace and Motion in a Finsler space.		
Unit	Торіс	S	No. of
			Lectures
Ι	Curve line element, Fundamental	function, Finsler metric	20
	Finsler space, Tengent space, Indi		1
	magnitude of a vector, homogen	neity properties of g _{ij} an	nd C _{ijk} ,
	Geodesics.		
П	Fundamental postulates of Cartan,		atives, 20
	1	,	wald's
	connection, Covariant derivative		
	properties, Relation between conne	ection coefficients of C	Cartan
	and Berwald.		
III	Commutation formulae, The three		
	Identities satisfied by the Curvature		
IV	Curvature tensor of Berwald, The I	Lie-derivatives in a Fins	sler 15
	space, Motion in a Finsler space.		
Suggested re	U		
	d: The Differential Geometry of Finsler: Foundations of Finsler Geometry and		

M.A./M.Sc. II (SEMESTER-III), PAPER-IV

Advanced Discrete Mathematics

Course Code:	B030906T		Fifth Elective paper
		Max. Marks: 25+75	
	f Lectures-Tutorials (in veek): 4+1=5	Course Title: Advanced I	Discrete Mathematic
Course outcome	25:		
CO1: Understan	d the basics of combinatorics, and be	e able to apply the methods fr	om these subjects in
problem solving			
CO2: Be able to	use effectively algebraic techniques	to analyse basic discrete stru	ctures and
algorithms.			
CO3: To provide	a formal connection between algorit	thmic problem solving and the	e theory of languages
and automata a	nd develop them into a mathematica	al (abstract) view towards algo	orithmic design and
in general			
computation its	elf.		
Unit	То	pics	No. of
			Lectures
I	Basic counting principles, Perm		
	and without repetitions), Binomia		
	Counting subsets, Set- partition	ns, Stirling numbers Principl	le of
	Inclusion and Exclusion, Deranger		
П	Definition, examples and basic		20
	graphs, complete graphs, bi-p		n of
	graphs, paths and circuits, Euler		
	the adjacency matrix, weighted	• • •	
	problem, shortest path, Dijk	stra's algorithm, Floyd-Wa	irshall
	algorithm.		
III	Generating functions: Algebra of		20
	function models, Calculating gen	erating functions, Exponentia	1
	generating functions.		
	Recurrence relations: Recurrence		
	conquer relations, Solution ofrec generating functions.	urrence relations, solutions b	У
IV	Languages : Alphabets, string,	Janguago Pasis Operation	s on 20
IV	language, Concatenation, Kleene		5 011 20
	Finite Automata and Regular Lan		
	Regular Expressions, Transition		non-
	deterministic finite automata, I	-	
	languages and their relationship		-
	lemma and closure properties of		<u>ס</u>
Suggested Read		-0	I
	ts of discrete mathematics, Tata McG	Graw Hill Education, 2008	
	ete Mathematics, Pearson Edition Ind		
	R.M. Wilson, A Course in Combinato		ersity Press, 2001
	<i>inatorial Techniques</i> , Hindustan Book	, , , , , , , , , , , , , , , , , , , ,	,,

J. E. Hopcroft, R. Motwani and J. D. Ullman, *Introduction to Automata Theory, Languages, and Computation,* 2nd Ed., Addison-Wesley, 2001.

P. Linz, An Introduction to Formal Language and Automata 4th edition Publication Jones Bartlett, 2006

M.A./M.Sc. II (SEMESTER-III), PAPER- V

Introduction to SCILAB /MATLAB

Course Code: B030907P	Credit-5	Sixth Elective paper
	Max. Marks: 50 + 50	
Total No. of Lectures-Practicals (in hours per	Course Title: Introdu	ction to SCILAB /MATLAB
week): 2+6		
Course outcomes:		
CO1: The students will be able to use SciLab/MATLA	B in their mathematical p	roblem solving.
CO2: The students will be able to use these softwar	e in working problems rel	ated to polynomials and
Linear Algebra		
Introduction to SciLab/ MATLAB, Installation of SciLa	ab/ MATLAB, Basic elemer	nts of the language,
Looping and Branching: If, select, for, break, contin	ue, Functions, return, Con	tour plots, tiles, axes,
legends.		
Matrices: Creating matrices, sum, product of matric		
system of equations, working with polynomials, de	fining a function and outp	out arguments.
Practicals:		
1. To print the prime numbers betwee		
2. Write a program to add, subtract, m	1.	
3. To find the average of between n and	nd 12n where n is an inte	eger.
4. Write a program to check a number	e	
5. Write a program to display table fro	om 11 to 20.	
6. To find the roots of a cubic equation	n.	
7. To sum and difference of any two r		the row
sum and column sum of a given m	atrix	
8. To find inverse of a given 3x3 mat		
9. Write a program to find the transpo		natrix.
10. To sort all the elements of a $4x4$ m	atrix.	
11. Program to accept a matrix and de	termine whether it is a s	ymmetric
matrix, skew-symmetric or not.		
12. Write a program to print Fibonacci	numbers.	
Suggested Readings:		
1. Gilat, A. : MATLAB: An Introduction with Applicat	ions, Wiley , 2012 2.Pratap	o, R : Getting Started with
MATLAB, Oxford Univ Press, 2019		
3. Nagar, S. : Introduction to Scilab, Apress , 2017		

MA./M.Sc. II (SEMESTER-III), PAPER- V

Introduction to LaTex

Course Code: B030908P	Credit-5	Sixth Elective paper
	Max. Marks: 50+50	
Total No. of Lectures-Practicals (in hours per	Course Title: Introduct	ion to LaTex
week): 2+6		
Course outcomes:		
CO1: The students will be able to know that how the	concepts have been deve	loped in Mathematics
CO2: The students will be able to different typesetti	ng Mathematical formulae	e and equations.
CO3: The students will be able to typeset in differen	t formats including resear	ch paper, report and thesis
Topics		
Introduction to LaTeX, Installation of LaTeX, Law	yout Design, LaTeX inpu	ıt files, Input file
structure. Document classes, packages, environme	ents, page styles, Typese	etting texts, Fancy
Header, tables, Inline math formulas and displa	ayed equations, Math sy	mbols and fonts,
delimiters, matrices, arrays, Typesetting Mathematic	atical formulae: fraction	s, Integrals, sums,
products, etc.		
Producing Mathematical Graphics.		
Document classes for paper writing, thesis, bo	oks, etc. Table of cont	ents, index, bibliography
management. Hypertext, pdf pages, geometry, fanc	y header and footer, Verl	oatim, itemize, enumerate,
boxes, equation number.		
Practicals:		
Practicals based on above .		
Suggested Readings:		
Kortwitz: Latex A beginner guide, Packt Publishing Lt	d, 2021	
Karmali: A Short Introduction to Latex, Greatespace	Independent Pub Platefor	m, 2019
Language the Later of A. Da successful Duran successful Constants A.	ldison Wisley,1994	
Lamport: Latex: A Document Preparation System, Ad	-	

M.A./M.Sc. II (SEMESTER-IV), PAPER-I

	ADVANCED O	PERATION RESEA	RCH	
Course Cod	e: B031001T	Credit-4	Core paper	
		Max. Marks:		
		25+75		
	. of Lectures-Tutorials (in	Course Title: Advar	nced Operation	Research
	nours per week): 4			
Course outcon				
	t will be able to define Inventor	• •		<i>.</i> :
	t will be able to define Quening			
	der steady and transient states	. Study of M/M/1 and	M/M/s quenin	g models and
	inear Programming		DEDT	
	t will be able to analyse Networ	-		
	t will be able to define Game th	-		
-	on of 2×2 game without saddle	e point. Graphical me	thod of solution	for $2 \times n$ and
m×2 games.				
	t will be able to solve Integer Pr	rogramming problem	and Branch and	Bound
technique.	r			N7 0
Unit		Topics		No. of
Ι	Come theory Zone Sum Com	a Calution of motor an	1	Lectures
1	Game theory, Zero- Sum Gam saddle point, Solution of 2×2 g	-	-	20
	method of solution for 2×2 and		-	
	Branch and Bound technique.	a m/2 games, meger	r rogrammig,	
II	Network analysis, CPM and	PERT, Network con	nponents and	20
	general procedure forconstruc	tion of networks and	numbering of	
	events (Fulkerson's rule). CPM	A computation and de	termination of	
	critical path.			
III	Inventory theory, economic of	- •		20
	demands having shortages and	e	•	
	models with discrete or contin	-	-	
	model for Equipments that continuous form.			
IV	Quening theory and its charac	rteristics stochastic Pr	ocesses under	
_ ,	steady and transient states. Stu			15
	models, Parametric Linear Prog	•	1 8	
Suggested Re				
Operations Re	esearch – kantiswarup, P.K.gupta	, Man Mohan–Sultan C	hand & sons, Ne	w Delhi
Operations Re	esearch (An Introduction) – Ham	dy A. Taha – Pearson		
Operations Re	esearch– R.K.Gupta–Krishna Prak	asan		
Operations Re	esearch –K.Nagrajan - New Age I	nternational Publicatio	าร	

M.A./M.Sc. II (SEMESTER-IV), PAPER- II

FLUID DYNAMICS

Course C	code: B031002T	Credit-4	Core pape	er
		Max. Marks: 25+75		
Total N	o. of Lectures-Tutorials (in hours per	Course Title: FLUID	DYNAMI	CS
	week): 4			
Course ou	tcomes:			
CO1: The	Students will be able to identify the fund	lamental concepts of Flu	id dynamic	s and their
role in mo	dern mathematics and applied context	s.		
CO2: The	Students will be able to apply the Fluid	dynamics concepts to o	diverse situ	ations in
physics, ei	ngineering, and other mathematical cor	ntexts.		
Unit	Торіс	cs		No. of
				Lectures
Ι	Lagrangian and Eulerian methods to		^	20
	of continuity, Boundary conditions, S	Stream Lines. Pathlines	and	
	streak lines, Velocity potential.			
	Irrotational and rotational motions.		-	
Π	Euler's equations of motion, Pressu			•
	Impulsive actions, Flow and circulation			20
	motion. Stream function. Irrotational m		Complex	
	velocity potential. Sources, sinks, doub	plets, and their		
III	images. The two-dimensional irrotational motio	n is produced by the moti	on of	
111	circular and elliptic	in is produced by the moti		20
	cylinders in a liquid, Kinetic energy	of liquid Milne-Thomson	n circle	20
	theorem. The theorem of Blasius, Stol	·		
IV	Wave motion in gas, speed of sound, ed		subsonic,	15
	sonic, super-			
	sonic flow of a gas, isentropic of a gas,	shock formation		
Suggested	Readings:			
F. Chorlton	: Text Book of Fluid Dynamics, C.B.S. Publ	lishers, Delhi,1985.		
W.H. Besai	nt and A.S. Ramsey: A Treatise on Hydrod	lynamics, Part II, C.B.S. Pul	blishers, Del	hi,1988.
B.G.Verma	: Hydrodynamics, Pragati Prakashan, Mee	erut, 1995.		
M.D. Raisir	nghania: Fluid Dynamics, S.Chand and Co,	2003		

M.A./M.Sc. II (SEMESTER-IV), PAPER-III

Special Functions

Cou	rse Code: B031003T	Credit-5	Seventh Ele	ctive paper
		Max. Marks:25+75		
	of Lectures-Tutorials (in hours per	Course Title: Special Fu	unctions	
	k): 4+1=5			
Course outcom				
	t will be able to define Fundamental		-	
	uation. Series solution to Legendre, E			
	t will be able to define Hermite equ		•	tion,
-	mula, Recurrence relations, Orthogona	•	lynomials.	
CO3: Student	will be able to define Lagurre equation	on and its solution.		
CO4: Student	will be able to define Hypergeometri	c Functions and Series Solu	tion.	
Unit	T	opics		No. of
				Lectures
I	Singularities:			15
	Fundamental System of Integrals	, Singularity of a Linear	Differential	
	Equation. Solution in the neigh	bourhood of a singularit	y, Regular	
	Integral, Series solution to Legen	dre, Bessel differential eq	uations by	
	Frobenius method.			
П	Hermite Polynomial:			
	Hermite equation and its soluti	on, Generating function,	Rodrigue's	20
	formula, Recurrence relations, Orth	nogonal Properties of Herm	nite	
	Polynomials			
111	Lagurre polynomial:			
	Lagurre equation and its solution	on, Generating function,	Recurrence	20
	relations, Orthogonal Properties of	Hermite Polynomials.		
IV	Hypergeometric Function:			20
	Hypergeometric Functions, Series S		-	
	Integral Formula, Confluent Hypergeo			
	of Hypergeometric function, Differenti	ation of Hypergeometric Fund	ction.	
Suggested Re	-			
	G.F., Differential Equations, Tata McGr			
-	avi P. and O' Regan D., An Introduction			ger, 2000
Codington, E.A	and Levinson, N., Theory of Ordinary I	Differential Equation, McGra	aw Hill.	

M.A./M.Sc. II (SEMESTER-IV), PAPER-III DIFFERENTIAL GEOMETRY OF MANIFOLDS

Course Code:	B031004T	Credit-5	Seventh Elective paper
		Max.Marks:25+75	
	ectures-Tutorials (in hours per	Course Title: Differentia	al Geometry of
week): 4+1=5		Manifolds	
Course outcom	les:		
	s will be able to explain the concep	-	xamples.
CO2: Students	s will be able to define Connection	S.	
	s will be able to define Lie – brack		
CO4: Student	s will be able to analyse Riemanni	an manifold, Riemannian c	connection,
	urvature tensor, Ricci tensor, scala		
	instein manifold, Geodesic in Rie		
Unit	Unit Topics		No. of
			Lectures
Ι	Definition and examples of diffe	erentiable manifold,	20
	differentiable function,		
	Tangent space, vector field.		
II	Connections, Affine connection	n and Covariant	20
	derivative, torsion and		
	curvature tensors, difference ten	sor of two connections.	
III	Lie – bracket, Lie – derivative	, exterior product of two	20
	vectors, Exterior		
	algebra, Exterior derivative.		
IV	Definition of Riemannian	manifold and example	s, 15
	Riemannian connection, Riema	nnian curvature tensor ar	nd
	Ricci tensor, scalar curvature,	Bianchi identities, consta	nt
	curvature, definition of Einstein	manifold, Geodesic in	
	Riemannian manifold, Projectiv	e curvature tensor.	
Suggested R	eadings:		
1 Quddu	s Khan : Differential Geometry of	manifolds — PHI Publicatio	ons
2 H. S. Sł	nukla & B. N. Prasad: Differential G	Geometry of manifolds — V	/andana Prakashan.

M.A./M.Sc. II (SEMESTER-IV), PAPER-III

Advanced Numerical Methods

Co	urse Code: B031005T	Credit-5	Seventh Elective Pa-
		Max. Marks: 25+75	per
	o. of Lectures-Tutorials (in hours r week): 4+1=5	Course Title: Advance	d Numerical Methods
Course outco	-		
	nt will be able to solve System of Line	ar Algebraic Equations, or	dinary differential
	nd Partial differential equations.	-	
	tudents will be able to understand and	apply various iterative tech	niques for solving
	gebraic equations.		
CO3: The st	udents will be able to analyze the consis	tency and convergence of a	given numerical
scheme.			
	tudents will be able to explain what kir		
• •	s (hyperbolic, parabolic and elliptic) and		
CO5: The st	tudents will be able to demonstrate famil	liarity with the basics of finit	te difference methods fo
the numerica	l solution of partial differential equation	1S•	
Unit	То	pics	No. of
		-	Lecture
Ι	Numerical Solution of System of I	Linear Equations: Gauss El	imination 20
	Method with Partial and Complet	te Pivoting. Triangular fac	ctorisation
	methods. Iterative methods: Jacobi	method, Gauss-Seidel me	ethod and
	Gauss Jacobi method and their		
	convergence, diagonal dominance,	Successive-Over Relaxation	on (SOR)
	method, Ill- conditioned matrix.		
II	Numerical Solution of ordinary Diff	ferential equations: Numer	
	solution of ODE		20
	by Picard's, Euler's and Runge-Kutt		ie
	problems: Finite difference method,		
III	Numerical Solution of Partial Diff	•	
	second order general PDE, Differen		
	Parabolic PDE. Heat conduction equation	ation and its numerical solu	tions with
	finite difference methods (Two		
IV	and three level difference methods).	Lie DDE Mare equation	and its 15
1 V	Difference methods for Hyperbo numerical solutions with finite dif	•	
	Difference methods for Elliptical		
	equation and its numerical solutions	·	•
Suggested Re			003.
	R. K. Iyengar – R. K. Jain, Numerical Met	thods for Scientific and Engi	neering Computation
	ernational, 6th Edition 2012.		
-	nd C. DeBoor, Elementary Numerical An	alysis: An Algorithmic Appro	ach, McGraw Hill, N.Y.,
	and P. O. Wheatly – Applied Numerical A	Analysis, Pearson Education	Inc., 1999
	nd P. Rabinowitz – A First Course in Num		

•

÷

K.E. Atkinson, An Introduction to Numerical Analysis, John Wiley and Sons, 1989.F.B.Hilderbrand, Introduction to Numerical Analysis, Dover Publication.W.F. Ames, Numerical Methods for PDEs, Academic Press, N.Y., 1977.

F. Alles, Numerical Methous for PDES, Academic Press, N.1., 1977.

M.A./M.Sc. II (SEMESTER-IV), PAPER-IV

Research Project/ Dissertation

Course Code: B031006P	Max. Marks: 50+50 Min. Passing Marks: 33	Core Compulsory
Credit: 10	Course Title: Research Project/ Dissertation	

Course Outcomes: This course will provide an opportunity to the students to acquire necessary research skills aspart of the academic activity.

Guidelines for Post Graduate M.Sc. Mathematics Project

1. Any student registering for doing project is required to inform the In-charge, Mathematics the name of his/her project supervisor(s) at the time of pre-registration.

2. Topic of such research project should be relevant to Mathematics programme on the whole.

3. The topic of such research project shall be finalized only after the Department/ College approves the same.

4. The student has to submit soft copy along with a hard copy of Research Dissertation to the Head of the Department/ College Principal on or before the last working day of the semester.

5. Each student shall be compulsorily supervised in the research project by a faculty member. The Supervisorwill guide the student in methodology and the course of the study.

6. Periodic individual conference, related to research project of each student, shall be conducted by the supervisor.

7. The student's performance in such assignments is considered in assigning the internal assessment marksallocated for research project.

8. The student must submit the "Project Registration Form" to the In-charge, Mathematics. Sample of Project Registration Form is given below:

Project Registration Form		
1-	Name of the college:	
2-	Department	
3-	Name of the student:	
4-	Roll No. :	
5-	e-mail :	
6-	Name of the supervisor(s):	
7-	Title of the Project:	
8-	Signature of the Student:	
9-	Signature of supervisor(s):	
10- Signature ofHOD,Mathematics		